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Using the microscopic density-functional theory for inhomogeneous simple fluids, we derive a nonlo-
cal and non-Gaussian expression for the effective Hamiltonian of a fluctuating liquid-vapor interface. If
a gradient expansion is applied to this Hamiltonian, one obtains—after a partial resummation—as the
leading term the standard effective interface Hamiltonian which is proportional to the increase of the
area of the interface relative to that of the flat configuration. The next to leading terms are proportional
to the Gaussian and to the mean curvature of the interface, respectively. Microscopic expressions for
the coefficients in this expansion are derived. If the interparticle interactions in the fluid decay accord-
ing to power laws, the gradient expansion breaks down. This is reflected in the nonanalytic behavior of
the wave-vector-dependent surface tension which can be expressed in terms of the Fourier transform of
the interaction potential between the fluid particles. Various approximations of the nonlocal Hamiltoni-
an are compared quantitatively. The relevance of this Hamiltonian for interpreting scattering experi-

ments is discussed.

PACS number(s): 68.10.Cr, 68.15.+e¢, 61.25.Bi

I. INTRODUCTION

The understanding of the structure of fluid interfaces
poses an outstanding challenge for both theoretical and
experimental physics [1-5]. This interest has been in-
creased even further by the discovery of interfacial phase
transitions such as wetting, surface melting, layering,
etc., because these phenomena result from the interaction
between emerging interfaces where at least one of them is
a fluid-fluid interface. Therefore its structure determines
inter alia the corresponding thermodynamic singularities
of such interfacial phase transitions.

In spite of numerous contributions to this field its com-
plexity has so far prevented a satisfactory and complete
understanding of the structural properties of fluid inter-
faces. The present knowledge is based on various approx-
imations which focus on different aspects of the problem
and which are sometimes incompatible with each other.
Naturally this situation has led to numerous discussions
in the literature, many of them being stimulated by the
seminal paper by Buff, Lovett, and Stillinger [6].

One way of approach to the description of an interface
separating two fluid phases follows the ideas formulated
initially by van der Waals [7]. Within this approach the
existence of an interface is an intrinsic property of an in-
homogeneous fluid where two phases coexist (they are
separated by appropriate boundary conditions). In par-
ticular, the existence of the interface does not require
such external agents as gravity, the finite size of the sys-
tem, or a substrate with which the interface interacts.
Accordingly, within this approach, the density profile
present in an inhomogeneous system exhibiting an inter-
face is called the intrinsic density profile p;,(z). In a
second step this flat intrinsic interface is used as the start-
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ing point for a more complete description of the actual
interface. It may be seen as a ‘“‘skeleton” on which
ripples—traditionally called capillary waves—are un-
frozen. These ripples are considered to be an inherent
part of the actual interfacial structure though they are
not included in the concept of the intrinsic density
profile. Along this line of reasoning the full interfacial
structure is determined with the help of the effective in-
terface Hamiltonian. So far this Hamiltonian [8-12] has
been constructed phenomenologically in such a way as to
include the cost in free energy to deform the initially flat
interface into a given rippled configuration. In the third
step the effective interface Hamiltonian is used in the
Boltzmann factor with which different configurations of
the deformed interface are weighted.

Although attractive in its conceptual construction the
van der Waals approach lacks a rigorous basis and misses
the fact that without gravity and in spatial dimensions
d =3 the fluid interface is rough. An important concep-
tual improvement was achieved by Weeks [13] and
Bedeaux and Weeks [14] who argued that the density
fluctuations with wavelengths up to the bulk correlation
length & contribute to the intrinsic density profile while
the fluctuations with wavelengths larger than & are
represented by the capillary waves unfrozen as undula-
tions on this intrinsic profile. This picture was supported
by model calculations [13] but a rigorous microscopic
justification is still missing. Such a microscopic approach
should open the possibility of identifying both the intrin-
sic and capillary wave contributions to the interfacial
structure together with a clear definition of the range of
the wavelengths of the density fluctuations corresponding
to the two regimes mentioned above. Equally important,
such an approach should also produce the expression for
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the effective interface Hamiltonian. So far most of the at-
tempts to derive the effective interface Hamiltonian are
based on the coarse-grained standard Landau theory or
modifications thereof [15-18]. After tracing out all de-
grees of freedom but the local interface position, one ob-
tained the corresponding effective Hamiltonian which—
within this approach—is, as phenomenologically expect-
ed, the sum of the geometrical invariants of the interface:
the area of the interface, its mean curvature and the
square of it, and the Gaussian curvature. The corre-
sponding coefficients of these terms turn out to be mo-
ments of the square of the derivative of the intrinsic in-
terface profile. Recently, this Landau-type approach has
been extended [19] in order to derive the Helfrich Hamil-
tonian [20,21]. These authors determine the coefficients
corresponding to the geometrical invariants entering the
effective interface Hamiltonian by evaluating the Landau
free energy for two particular interface configurations: a
sphere and a cylinder.

Although it is pleasing to see that the phenomenologi-
cal form of the effective interface Hamiltonian can be de-
duced from a more complete bulk theory, the Landau
theory does not allow one to keep track of the microscop-
ic details of the fluid. First steps have been undertaken in
order to overcome these shortcomings by resorting to an
expansion of the free energy density in powers of curva-
tures for spheres and cylinders [22], to a gradient expan-
sion [23-25] or to an expansion in powers of the range of
the intermolecular interaction potential [26]. These ap-
proaches lead again to the phenomenological form of the
effective interface Hamiltonian but such that its corre-
sponding coefficients are now expressed in terms of mi-
croscopically defined distribution functions of the non-
uniform fluid.

In this paper we adopt a still different approach by us-
ing the density-functional theory [27,28] as a starting
point, which has proven to be particularly successful in
describing nonuniform fluids on a microscopic level.
This allows us to determine the effective interface Hamil-
tonian without using the gradient expansion which is in-
herent in the other microscopic models [29-31]. This
more general approach leads to a nonlocal and nonbilin-
ear effective interface Hamiltonian which differs from
those which have been obtained previously. Some results
of this approach can be found in Refs. [32,33]. For
smooth interface configurations our Hamiltonian reduces

|
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to the standard phenomenological form provided that the
pair interaction potential between the fluid particles
fulfills certain conditions. It turns out that for realistic
fluids with van der Waals interactions the nonlocal Ham-
iltonian cannot be replaced by the standard phenomeno-
logical one. We compare the various approximations
quantitatively and discuss the implications of our findings
for the interpretation of data gathered from scattering ex-
periments at interfaces.

II. THE MODEL

In order to derive the effective interface Hamiltonian
we employ a simple version of the density-functional
theory. In this approach the nonuniform equilibrium
density profile minimizes the appropriate variational
functional. This functional depends parametrically on
the thermodynamic state of the system and on the micro-
scopic interactions present in the system, i.e., on the
particle-particle interaction potential w(r) as well as on
the external field V(r). The density functional evaluated
at the equilibrium density profile is equal to the appropri-
ate thermodynamic potential.

In the following we use the grand canonical density
functional Q({p(r)},T,u;{w(r)},{V(r)}) in which the
thermodynamic state is specified by the temperature T
and the chemical potential u. We consider only one-
component fluids with spherically symmetric interaction
potentials. In its general formulation the knowledge of
the explicit form of the density functional allows one—in
principle—not only to determine the density of the sys-
tem but also the whole hierarchy of correlation functions.
However, in practice one is forced to work with approxi-
mate forms of the density functionals. This reflects our
still incomplete knowledge about the properties of non-
uniform fluid systems.

The approximation used in this paper is, as for all
known explicit density functionals, mean-fieldlike. It is
based on splitting the potential w(r) between the fluid
particles into its short-range repulsive part w;(r) and into

its long-range attractive part w,(r) [34]:
w(r)=w,(r)+w(r) . (2.1)

This splitting is reflected in the contributions to the re-
sulting density functional:

Q{p(0)}, T {w(n)}, (V(0)))= [dr £,(p(r), T)+1 [dr [ drw(|r—r'|)p(r)p(r’)

—u [ drp(n)+ [ drp(r)vir) .

The first term on the right-hand side of Eq. (2.2)
represents the free energy of the reference system of par-
ticles interacting via the short-range potential w,(r).
This free energy is evaluated in the local approximation;
fu(p,T) is the free energy density of a uniform reference

(2.2)

system with number density p. The second term includes
the effect of long-range interactions. This contribution is
determined by @(r) which for large r is identical to w(r);
for small r it is modified, and smoothed in a well-defined
way [35]. The second term in Eq. (2.2) neglects correla-
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tions between the fluid particles: the two-particle density
pPAr,r') is replaced by the product of two one-particle
densities p(r)p(r’). This is equivalent to replacing the
two-particle distribution function g®* by its large-
J

Qg {p(D)}, Topas (w0}, (VO = [ dr f£1(p(r), T)

+
2

—u [ drpr)+ [ drpmv(n),

which results from replacing the two-particle distribution
function by its low-density limit (for details, see Refs.
[36,37]).

All the results obtained for the simple version, Eq.
(2.2), can be straightforwardly translated into those fol-
lowing from Eq. (2.3) by replacing the spherically sym-
metric potential @w(r) by

—Bwy (r —Bw,(r)

g(r=kyTe T1—e 1, (2.4)
which is also spherically symmetric. For reasons of sim-
plicity in the following we employ the version given in
Eq. (2.2) and at the end we shall also discuss the results
which correspond to the more accurate expression given
in Eq. (2.3). The third term on the right-hand side of Eq.
(2.2) is characteristic for the grand canonical functional
while the last term accounts for the possible interaction
of the fluid particles with an external potential including
gravity.

As far as the particle-particle interactions are con-
cerned we are particularly interested in the case of long-
range van der Waals interactions decaying at large dis-
tances as @(r)~r % Since, however, our analysis does
not require the specification of the actual type of interac-
tions the final formulas can be evaluated for arbitrary

spherically symmetric interaction potentials @ (7).

III. THE EFFECTIVE INTERFACE
HAMILTONIAN

Below we derive the expression for the effective inter-
face Hamiltonian, i.e., the cost in free energy required to
deform the initially flat liquid-vapor interface into a rip-
pled configuration. Thus the concept of the effective in-
terface Hamiltonian as used in this paper has a broader
meaning than is frequently attributed to it in the litera-
ture [6,8—-10,15] because it is not restricted to describe
only the cost in free energy due to the increase of the in-
terfacial area.

In order to perform this analysis systematically we en-
close the coexisting liquid and vapor into the paral-
lelepiped with extensions 2L,, 2L,, and 2L, along the x,
y, and z axis, respectively. This will allow us to separate
the bulk, surface, line, and point contributions to the
grand canonical density functional and eventually to find
the contribution identified as the effective interface Ham-
iltonian. Since in this finite-size system the coexisting
liquid and vapor are surrounded by vacuum, there appear
additional interfaces, such as the liquid-vacuum and the

fdrfdr’p(r)p(r’)e_ﬁw"”r—r")[l—
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distance limit g¥=1. Actually, it turns out that in the
analysis presented below one can use without additional
complications instead of Eq. (2.2), a more sophisticated

version of the density functional,

—Bw,(|r—r'])
e ! ]

(2.3)

r
vapor-vacuum interfaces. They have to be identified and

must be separated from the expression to be analyzed.
According to the description given in the Introduction
we evaluate the functional in Eq. (2.2) for the density
configuration pA(r)=p;,(z—f(R),T) where z=f(R),
R=(x,y), describes the mean position of the liquid-
vapor interfaces. In our analysis we disregard bubbles
and overhangs because the thermodynamic state of the
system is assumed to be far away from the critical point.
The splitting of the free energy functional into the
different types of contributions mentioned above will be
performed for the specific sharp-kink model of the intrin-
sic density profile which we adopt in this paper. The ac-
tual intrinsic profile varies smoothly across the interface
from the bulk liquid density p; on one side to the bulk va-

FIG. 1. The coexisting liquid (/) and vapor (g) phases are en-
closed inabox —L,<x=<L,, —L,<y<L,, —L,<z=<L, and
surrounded by vacuum (v). The local position of the liquid-
vapor interface is denoted by f(x,y). The symbols 1 and 2 refer
to the line tensions 7,,, and 7,,,, respectively [Egs. (3.14) and
(3.15)], whereas the symbol 3 refers to the line tension 7,,, [Eq.
(3.16)] corresponding to the case f(x,y)=0 (dotted line). The
symbols I, II, and III refer to the appropriate point tensions
N70ig> Mwit> aNA N(3u)g (301> TESPECtively; 7(3y)g (3, COTresponds to
the case f(x,y)=0 [Egs. (3.18)-(3.20)].
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por density p, on the other side. The width of the inter-
facial region is of the order of the bulk correlation length
& which itself is of the order of the molecular diameter
provided the system is not too close to its critical state
[38]. In order to be able to proceed analytically we re-
place this intrinsic density profile by its sharp-kink ap-
proximation

Pint(2)=p (T)O(2)+p)(T)O(—2) , (3.1)
where ©(z) denotes the Heaviside function; the piecewise
constant density changes discontinuously from p; to p, at
the interface (see Fig. 1). The sharp-kink approximation
to the intrinsic density profile has been successfully em-
ployed in the microscopic analysis of the wetting transi-
tions [2]. It is known to lead to results, for example, for
the effective interface potential, which reflect the essential
features of the wetting transitions and on the other hand
]
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are obtainable without the computational complications
which one encounters when one is dealing with the
smooth variation of the intrinsic density profile [39,40].
After inserting the sharp-kink density profile [Eq. (3.1)]
into Eq. (2.2), which is tantamount to evaluating the
grand canonical density functional under the constraint
of a fixed interface location specified by the function
f(x,y), one obtains for large system sizes the following
expression for the grand canonical functional  in which
the bulk (), surface (Q°), line (Q*), and point (Q?) con-
tributions are isolated:

Q=0+ 0'+ Q'+ QP+ AQ ; (3.2)

AQ denotes the remaining terms. The explicit forms of
Q/, 07, and AQ depend on the asymptotic behavior of the
shape of the interface f(x,y) for |x|,|y| — . By assum-
ing f(x,y)~R ~1*¥ for R=(x*+y*)!"? > © and §>0
one obtains after some algebra the following expressions:

QP=4L,L,L,[0,(p;,T,u)tw,(pg, T,p)], (3.3)
QS=4LxLy0mt+4L L, (o v1+aug)+4(Lx+Ly )L, (0, +0,), (3.4)
Ql=4(Lx+Ly L )Ty T Typyg ) T ALy +Ly))Te 5 (3.5)
QP =417,)g T 407001 T 4NG01g Gort
*%(pl—pg)z fj: dx f_+ dy f dx’ f_+: dy'f(:o dz fof(x"y’)#f(x’y)dz’w(]r'——r|) (3.6)
and 'and
AQ(L,,L,,L,)—0 for L,,L,,L,— ; (3.7) Ting =31 —pg? [ " dx [ 7 dy t(x,y) (3.16)

for finite-size effects in interfacial tensions see Ref. [41].
In Egs. (3.3)-(3.7) we have used the following notation:
wp(p, T, = f,(p, T)+Lwop*—pp (3.8)

is the (mean-field) grand canonical free energy density
where

wo= [ draw(r), (3.9

oy=— zpzf dx t(x), (3.10)

Oog=—1p2 fo dx t(x) , G.11)
and

a}§‘=—%~(p:—Pg)2 fo“’ dx t(x) (3.12)

denote the liquid-vacuum, vapor-vacuum, and liquid-
vapor surface tension, respectively, and

t2)=["dz [

Xf dy'w[r'=(x"2+y"2+22)/?].
(3.13)
Analogously,
Towl = 3P1 f fow dy t(x,y) , (3.14)
Tovg = 3Ps f dx fow dy t(x,y) , (3.15)

represent the line tensions denoted in Fig. 1 by 1, 2, and
3, respectively, with

tx,p)= fx“’dx'fy‘”dy'f_:”dz'w(r'), (3.17)
Mg =405 ["dx [“dy [ dzt(xp,2), 3.18)
Moo =—4p} [ “dx [Tdy [ dzt(xp.2), (3.19)
and
NvgGon = —1(p1—pg )’
Xfow dx fow dy fow dz t(x,y,z), (3.20)

represent the point tensions denoted in Fig. 1 by I, II,
and III, respectively, with

(x,y,2)= fwdx’ fwdy’ fwdz'w(r)
x y z

Some of the terms present in Egs. (3.4)—(3.6) are easily
identified as the artificial ones mentioned above which re-
sult from the finite size of the system. These include all
the terms in Eq. (3.4) except the first one which is the
contribution to the free energy from the flat vapor-liquid

(3.21)
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interface which is proportional to the intrinsic liquid-
vapor surface tension o', all the terms in Eq. (3.5), and
the first three terms in Eq. (3.6); see Fig. 1. Accordingly,
the capillary wave Hamiltonian #({f}) is given by the

fourth term in Eq. (3.6), which is a nonlocal and nonbilin-
J

ho(R, (f1)==Hpi—p,* [k’ [ dz [T M azale—s])

If the system is exposed to gravity [i.e., V(z)=mGz,
where m is the mass of the particles] the effective inter-
face Hamiltonian in Eq. (3.22) contains an extra term
which is equal to (m /2)(p; —p, )G [dx [dy f*(x,y).

Before discussing the relation between the effective in-
terface Hamiltonian as described by Eq. (3.22) and the
standard phenomenological expressions for this Hamil-
tonian (see below) we point at two obvious features of Eq.
(3.22): (G)  H({f+const})=H({f}) and (i)
F({f=const})=0.

The first property means that in an infinite system of
coexisting liquid and vapor the cost in free energy for
shifting the interface uniformly by an arbitrary distance
is zero. The second property means that the extra cost in
free energy described by the effective interface Hamiltoni-
an is zero for a flat interface. These two properties are
also displayed by the standard phenomenological effective
interface Hamiltonian [6,8-10,15]

HN =5, [dx [ dy{[1+(VFP] 1],

where 7, is a phenomenological parameter identified as
the liquid-vapor surface tension.

The relation between #({f}) and #'*/({f}) can be es-
tablished by observing that due to the decay of the in-
tegrand @(|r—r’|) for large |r—r’| the main contribution
to the integral in Eq. (3.22) comes from those regions
where R=(x,y) and R'=(x',y’) are close to each other.
On the other hand, the interface described by f(x,y) is
smooth because it includes only fluctuations with wave-
lengths larger than the bulk correlation length £. Ac-
cordingly, the upper limit of the z’ integration in Eq.
(3.22), ie., f(x'",y')—f(x,y), is small for the dominant
contributions. It is straightforward to show (see Appen-
dix A) that Eq. (3.23) follows from Eq. (3.22) by expand-
ing the difference f(x’',y’)— f(x,y) in powers of x'—x
and y'—y,

Sxy )= fep)=f(x"—x)+f,(y"—p)
(X = x P+ [, (x —=x)(p' —y)
+3 Y =y

and by keeping only the linear terms. In this approxima-
tion Eq. (3.22) reduces to Eq. (3.23) with the surface ten-
sion coefficient &, given by o' in Eq. (3.12). In the next
step also the second-order terms, i.e., those including the
derivatives f,,, f,, and f,, are taken into account upon
inserting the expansion in Eq. (3.24) into Eq. (3.22). In
this case the effective interface Hamiltonian reduces to
the expression which in addition to the standard contri-

(3.23)

(3.24)
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ear functional of the interface configuration f(x,y):
HASP= [, R ho(R, (), (3.22a)

with

(3.22b)

r

bution [see Eq. (3.23)] due to the change of the interfacial
area contains terms describing the curvature corrections
to this standard contribution. Locally the shape of the
interface as described by the function f(x,y) is given by
the mean curvature H (x,y)

He fox LHDH L, A+ FD—2f o fof,

, (3.25)
201+ f2+f23?
and the Gaussian curvature K (x,y)
_ 2
K= M (3.26)

(I+f2+ 27

The derivation of the curvature terms is much more
lengthy and cumbersome than the derivation of the stan-
dard term given in Appendix A. Therefore we do not
document these details which go beyond the limits of any
reasonable presentation. Instead in Appendix B we quote
only the main points. As the result of this tedious calcu-
lation one obtains rigorously up to terms quadratic in
Sxxs fxy» and f,, the following form of the effective inter-
face Hamiltonian which resembles the Helfrich Hamil-
tonian [20,21]:

ﬂ({f])zagtfdx fdJ’{[l'HVf)z]l/z—l}
+x [dx [dy[1+(VFPIAHP =K ]+ -
(3.27)

where

_3m

=_29 2 [ 2 =
k=—3Bp) [ " dz 21(z)=— ¢

(Bp) [ “dr rim(r)

(3.28)

and
cri,;'=—%(A,D)2 fow dz t(z)=—%(Ap)2 fow dr r’w(r) .

(3.29)

Both the coefficient oi,gt in the standard part of the
effective interface Hamiltonian and « in front of the cur-
vature terms are proportional to moments of the long-
range attractive part of the interparticle potential w(r)
and are thus positive [see Egs. (3.12), (A3), (A6), (3.28),
and (3.29)]. This positivity of the coefficients holds also
for the more sophisticated version of the density-
functional theory given in Eq. (2.3). Also the integrands
in both terms on the right-hand side of Eq. (3.27) are
non-negative. The non-negativity of the integrand in the
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first term is obvious. The non-negativity of the integrand
in the second term is easy to check by using the represen-
tation of the mean and Gaussian curvatures in terms of
the principal curvatures k; and k, [42]; H=1(k,+k,)
and K=k k,. One obtains H?’—1K=1(k +k,)
+1(k}+k3)=0. Thus each of the first two terms in the
gradient expansion shares with the full nonlocal effective
interface Hamiltonian given in Eq. (3.22) the non-
negativity property (see Appendix C).

At this point it is worthwhile to compare the form of
our effective interface Hamiltonian, Eq. (3.27), with those
obtained by other authors. In fact the combination of the
curvature terms as it appears in Eq. (3.27), i.e., Hz—éK,
is the same as in Ref. [26] and it is proportional to the
bending energy of a thin elastic plate. On the other hand,
the expression derived in Ref. [22] in the limit £—0,
which corresponds to our case [see Eq. (4.6) in Ref. [22]],
is proportional to H 2+%K and thus leads to a difference
in sign. This last expression for the bending energy leads
to an effective interface Hamiltonian density h, which is
not positive definite for arbitrary interfacial
configuration. However, we would like to note that for
interface configurations we are concerned with, i.e., inter-
faces which are not closed, without bubbles, and with
f(R— o0 )=0, one has fdezR K(x,y)=0 so that the
Gaussian curvature gives a vanishing contribution to #.

For long-range forces the interparticle potential @(r)
decays as W(r— o )= Ar 97 where d is the spatial di-
mension. For nonretarded van der Waals forces 7=3 and
the coefficient k is infinite. If, however, retardation is
taken into account, i.e., 7=4, k remains finite but it de-
pends sensitively on the distance at which the crossover
towards retardation sets in. Nonetheless in this case as
for any power-law decay the higher moments of @w(r)
diverge and so the gradient expansion, which contains
higher-order derivatives of f, breaks down for long-range
interactions.

In the case of exponentially decaying forces the indi-
vidual terms in Eq. (3.27) exist but their sum diverges.
Only interparticle potentials with a finite support guaran-
tee the convergence of the gradient expansion (see Ap-
pendix D). These properties remain valid also in the case
when the potential @w(r) is replaced by the low-density
limit of the two-particle distribution function correspond-
ing to Eq. (2.4). The above-mentioned divergence prob-
lems have their counterpart in the field-theoretic deriva-
tion of the effective interface Hamiltonian. There the
coefficients of the gradient expansion in Eq. (3.27) are
proportional to the moments of the square of the deriva-
tive of the intrinsic profile: f°° dz z"(dp;, /dz)*. This
result has been derived for contactlike interactions for
which p;,,(z) approaches its bulk values exponentially. If,
however, within this approach one adopts the decay law
of the intrinsic profile as that of the so-called van der
Waals tails which are induced by the long-range interpar-
ticle forces, one has p;,(|lz|—w)~|z|”7 and the
coefficients in the gradient expansion become infinite for
n=2r+1.

For a general intrinsic profile the expansion in Eq.
(3.27) contains also a term linear in H which, together

with the term quadratic in H, gives rise to the spontane-
ous curvature [17-22]. However, the coefficient of this
term linear in H vanishes if p;,(z) is antisymmetric
around z =0. This is in accordance with our result, be-
cause the sharp-kink profile which we use for p,,, [see Eq.
(3.1)] is antisymmetric.

IV. WAVE-VECTOR-DEPENDENT
SURFACE TENSION
AND SCATTERING EXPERIMENTS

In order to elucidate the relevance of the nonlocal
character of the effective interface Hamiltonian given in
Eq. (3.22) and in order to obtain further insight into its
analytic structure we study it in Fourier space. With
f(q)——fRd_ldd IR e 7I9RfF(R), where R=(x,y) in

d =3, one finds
fh=1 [ 4@ o )d_,q 20(g)|F(@I>+0(F?) 4.1
The wave-vector-dependent surface tension
(@)=(p;—p, >2M;2”—“)’ “.2)
is determined by an appropriate Fourier transform
v(g)= [, ,d* 'Re""Rm(r=(R,0)) 4.3)

of the interaction potential. According to our previous
remarks the ¢ integration in Eq. (4.1) is confined to
|q] £ gmax With ¢pax =&~ !. The form of Eq. (4.1) has al-
ready been discussed previously in the literature
[11,41,43]. There it is postulated by first transforming
the quadratic approximation to Eq. (3.23) into Fourier
space,

FHS =%agf (27 )d_1q2|f 4.4)

and then by generalizing it phenomenologically into the
nonlocal form of Eq. (4.1) by introducing the g-dependent
surface tension in which configurations with short wave-
lengths renormalize the surface tension for long wave-
lengths [11,43]. Within our approach Eq. (4.1) is a conse-
quence of Eq. (3.22) after truncating contributions which
are of higher order than quadratic (the so-called non-
Gaussian contributions). It turns out that based on Eq.
(3.1) the g-dependent surface tension [see Eq. (4.2)] is
determined by the Fourier transform of the interparticle
potential. One can easily check that o(q =0)= o‘,g'
which means that in the limit of long wavelengths the
quadratic contributions to the standard and to the nonlo-
cal effective interface Hamiltonian are identical [44]. But
due to the long-range character of the interparticle poten-
tial [i.e, @W(r—ow)=Adr “@*7] the correction
o(g)—a(g =0) to the leading term contains both analyt-
ic contributions ~q2k k=1,2,..., and nonanalytic
ones. The leading nonanalytic term is given by
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[0(q—>0)—cr(q =0)]nonanalytic= Aﬂ(d+1)/2 2—(T+U

for 72k +1; T denotes the gamma function. For
7—2k +1 this term retains its nonanalytic character be-
cause in this limit the prefactor in Eq. (4.5) diverges and
leads via a resonance with the analytic term ~g2* to a
logarithmic singularity. This is actually the case for the
nonretarded van der Waals forces with 7=3. For d =3
and the model potential @W(r)= A(a%+r?)"3 where 4 is
negative and where a is proportional to the particle diam-
eter one obtains

2

a(q)za';;r[l_ %‘l [—In(ag)+In2+2—C]
+0(q*ng) | ; (4.6)

C ~0.577 215 is Euler’s constant. The above nonanalyti-
cities for long-range forces in Fourier space reflect the
breakdown of the gradient expansion which amounts to a
series expansion in powers of g2. Equation (4.6) shows
that o(q) exhibits at least a local maximum at g =0.
This property is not tied to the nonanalytic contribution
from long-range forces. For interaction potentials with
7> 4 one finds

o(@)=Hp,—p, V?|w,|(1— Lg®|w, /w,|+ - +)

— o1 Lg%k /ol ), @.7)

where ;= fRz d’R R’w(r=(R,0)), so that o(g) reaches
its value at ¢ =0 from below.

It is instructive to compare the wave-vector-dependent
Surface tension o(q) in Eq. (4.7) as obtained from the
nonlocal effective interface Hamiltonian with the corre-
sponding quantity &(q), defined as in Eq. (4.1), which
would follow from the local Hamiltonian in Eq. (3.27)
after truncation of all nonbilinear terms:

o(g)=o(1+ Lg% /ol + -+ ) . (4.8)
As can be seen by inspection &(gq) reaches its value at
g =0, which is the same as for o(q), from above, i.e., one
has 0(q)7&(q). The reason for this difference is that Eq.
(3.27) contains terms which are proportional to fourth-
order derivatives and to products of third-order and
first-order derivatives; these terms contribute to the term
~g? in o(g) but they are not captured by the curvature
terms H? and K. However, o(q) does contain these con-
tributions. Thus the Helfrich Hamiltonian [Eq. (3.27)]
does not allow one to infer the correct wave-vector-
dependent surface tension even in the limit ¢g—0. In
fact, the wave-vector-dependent surface tension &(q),
which corresponds to the Helfrich Hamiltonian, exhibits
the wrong qualitative behavior compared with that ob-
tained from the correct expression, i.e., o(q). It is impor-
tant to note that all previous studies in the literature
[16-19,22-26] have finally led to the Helfrich Hamil-
tonian and thus missed the difference between o(g) and

sin |7

—1

7+d g ! 4.5)

d

7+3
2

7+3
2

r

r

[

G(q). Thus even if the range of the interactions would be
sufficiently short in order to allow for the existence of the
gradient expansion (see Appendix D), the Helfrich Ham-
iltonian would be inadequate for describing the experi-
mentally relevant quantities (see below) which depend on
o(q).

As outlined in the Introduction e “A#1/1) gerves as the
statistical weight for determining thermal averages which
involve fluctuations on length scales larger than £. Inter
alia, such averages determine the actual shape of the in-
terface which can be probed by reflectivity and ellip-
sometry experiments [38,45-51]. These measurements
allow one to determine the moments

Fi= ["dgq? = f @) 4.9)
with i =0 and 1 corresponding to reflectivity and ellip-
sometry experiments, respectively. g, =2 /A, denotes
the aforementioned momentum cutoff inherent in the
capillary wave picture. We take A_;,=&. If £ is defined
as the second moment of the two-point correlation func-
tion G(r=|r,—r,|)={p(r,)p(r,)) —{p(r;)){p(r,)) one
has  &=(1/2d)[ fd r*G(r)]/ [d% G(r). For the
density-functional approach given in Eq. (2.2) one finds
E=|w,|[2d(wy+d*f, /3p*)] "}, where 3%f, /3p? is eval-
uated at the equilibrium bulk densities at coexistence and
where w;= [d% riw(r). For T—T, & diverges
as  E_=&70-T/T,)™Y, wv=i,  with &7
=[(1/4d)|w, /w,y|]'/%. Explicit calculations based on
Eq. (2.2) show that far below T, (and this is the tempera-
ture range we are focusing on [see Eq. (3.1)]) £, happens
to be a reasonable approximation for £(7 <<7,). Since
£o =3a we obtain for our model potential A;,=3a so
that ag,, =2 /3. This cutoff is of the order of the inverse
molecular diameter in accordance with experimental esti-
mates [38]. Within the nonlocal Gaussian approximation
of the effective interface Hamiltonian [see Eq. (4.1)] one
obtains in the presence of gravity

kT

(f QP g=——""—.
7@ mGAp+o(q)g?

(4.10)

By inserting the expression for the g-dependent surface
tension [see Eq. (4.2)], the moments F7 given in Eq. (4.9)
can be evaluated. It is important to note that the mo-
ments remain cutoff dependent. In order to make contact
with the full capillary wave Hamiltonian as described by
Eq. (3.22) [for which the average {|f(q)|?) cannot be cal-
culated analytically due to its non-Gaussian character]
and with other approaches we write the thermal average
of | f(q)|? in a form analogous to Eq. (4.10):

kyT
mGAp+oiiig?s(q)

(If(@?)= 4.11)
The function =(g) defined in Eq. (4.11) consists of the

Gaussian term EG(q)=a(q)/oi,;' and the remaining con-
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tributions 2 ;(q) due to the non-Gaussian fluctuations:
3(q)=Z24;(q)+2,5(q). For the local Gaussian approxi-
mation, which corresponds to Eq. (4.4), one has
o(g)=0o so that 2(;(g)=1. In order to estimate 2,(q)
we employ a saddle-point-like approximation. To this
end we evaluate the effective interface Hamiltonian given
in Eq. (3.22) for a sinusoidal capillary wave profile f(x,y)
[by using our model potential @(r)= A4 (a?+r2)"3], nor-
malize it properly, and after subtracting from it the

Gaussian contributions we consider the rest £,;(q) as a
mean-field-like  approximation to X (q). We
parametrize  the capillary wave by f,(R,q)

=foe ~IxI/Asingx in the limit A— o which is translation-
ally invariant in the y direction [32]. In the spirit of the
saddle-point approximation we choose f, to be the mean
amplitude. Since at low temperatures and in the presence
of gravity the mean thickness of the interface is of the or-
der of the molecular diameter we take f,=a [38]. The
properly normalized effective interface Hamiltonian
H({fA(R,q)})is denoted by F(q),

47£( (R,g)})
F(q)= lim ——2—{—{—:{—\—2—1—}— , (4.12)
Ao | gop foL,A
so that [52]
$.6(@=F(g)—2;(q) . (4.13)

Our results are displayed in Fig. 2 where F(q) is evalu-
ated for the full effective interface Hamiltonian [see Eq.
(3.22), full line], for the Gaussian nonlocal model [see Eq.
(4.1), dashed line], for the non-Gaussian local model [see
Eq. (3.23), dash-dotted line], and for the Gaussian local
model [see Eq. (4.4), dotted line]. As expected for ¢ —0

Fla) 0\0call@)/S, Gaussian, local
L S
o T non-Gaussian, local
0.8 : \E):non\ocal(q)/co AAAAAAAA T -
“*~.. Gaussian, nonlocal
0.6
non-Gaussian,
nonlocal
0.4
0 0.5 1 1.5 2{112
qa 3
FIG. 2. F(g)=lim,_ [4#({fA(R,q)})/(g’0R fFL,A)],

where L, is the lateral system size in y direction. The full,
dash-dotted, and dotted curves correspond to # evaluated for
ho given by Eq. (3.22b), Eq. (3.23) with 5, =o'f' [see Eq. (3.29)],
and ho=210B(Vf)? respectively. The dashed curve corre-
sponds to Eq. (4.1). Due to the above normalization the dashed
curve is identical to o(q)/o'}'. The inset compares S(g)=F(q),
which has a turning point at ag, =0.79 with 2(q) for T/T,=0.7
and a’*Ap=0.69. $;=0 0n0calq)/0o=F(q) if in Eq. (4.12) #
has the form given by Eq. (4.1). X is defined in the main text
[see Eq. (4.15)].

all approximations agree with the full nonlocal . For
larger g they differ so that close to g,, the difference be-
tween the standard local Gaussian expression (dotted
line) and the full nonlocal expression (full line) reaches
60%.

Now the question arises of how the above findings de-
pend on temperature. Within the density-functional
theory approach of Eq. (2.2) and for the sharp-kink ap-
proximation [Eq. (3.1)] the temperature dependence of
the effective interface Hamiltonian enters only via the
density difference p, —p, [see Eq. (3.22b)] and can be fac-
tored out [see Egs. (3.29) and (4.12)]. We expect these ex-
pressions to be reliable at low temperatures just above the
triple point T,. The density-functional theory given by
Egs. (2.3) and (2.4) allows us, however, to infer at least
certain aspects of the actual temperature dependence of

(@)

6 1+ — correlation length in the liquid phase
--- correlation length in the vapor phase

E=Eo

F@.N

FIG. 3. (a) The correlation lengths of the coexisting liquid ()
and vapor (g) phases plotted as function of the dimensionless
temperature T*=kyT /e as obtained from Eq. (2.3) for a
Lennard-Jones interaction potential parametrized by € and o
(see the main text). The triple point temperature is given by
T.* =~0.68 and the critical temperature by T.* ~1.3430 [37]. (b)
F(q,T) is the generalized wave-vector-dependent surface tension
as defined in Eq. (4.12) for f,=o0. # is given by Eq. (3.22) with
w(r) replaced by g(r) [see Eq. (2.4)]; g(r) is evaluated for a
Lennard-Jones potential (see Ref. [37]). £=(§,+§,)/2 is taken
from (a) for various temperatures T*. Our choice for the
wave-vector cutoff is ¢,,§=2w. The standard capillary wave
model predicts F(q, T)=F(q)=1.
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the effective interface Hamiltonian. These results must
be discussed cautiously because they are still based on the
sharp-kink approximation [Eq. (3.1)]. Therefore they can
be used only as long as the correlation length is still rath-
er small so that the intrinsic density profile still varies
sharply at the interface. Figure 3(a) displays the correla-
tion length (as defined above) in the liquid (£;) and in va-
por (£;) phases at coexistence as obtained from the
density-functional theory given by Eq. (2.3). These
curves correspond to a Lennard-Jones interaction poten-
tial w(r)=4¢€[(o /r)**—(o /r)®] which differs from our
above model potential. (For details concerning the rela-
tion between w,, w;, and w and the corresponding bulk
phase diagram see Ref. [37].) Since in our context the
correlation length plays the role of measuring the thick-
ness of the itrinsic density profile, in the following we
take £=(§;,+£,)/2. (In the discussion of the tempera-
ture dependence of the effective interface Hamiltonian in
the literature this significant difference between &, and &,
has so far been ignored [12,22-25]. Therefore all quanti-
tative conclusions drawn there which depend on £ must
be considered with reservation.) In Fig. 3(b) we show the
function F(q,T) for various reduced temperatures
T*=kgT /¢ as function of g£ with £ taken from Fig. 3(a)
for each temperature. Note that T7*=~0.68 and
T*=~~1.3430 [37]. The function F(q,T) has been ob-
tained numerically according to Eq. (4.12) for fy=o0 and
Ff given by Eq. (3.22) with @(r) replaced by g(r) [see Eq.
(2.4) and Ref. [37]]. As before one has F(q =0,T)=1
and F(qg— »,T)~q 2 As discussed above, the wave-
vector cutoff q,,,, is given approximately by A;. =&, i.e.,
Gmax$ =27 with & taken from Fig. 3(a). The general trend
in Fig. 3(a) is that F(q,T) increases as function of the
temperature for a given value of ¢&(T). This means that
for high temperatures the difference between the standard
local and Gaussian theory (compare Fig. 2), i.e., F,(g)=1
and the actual wave-vector-dependent surface tension
F(q,T) decreases. Within our low-temperature approxi-
mation we cannot answer the question whether
F(q,T—T,) as function of g£ will approach a curve
which differs from F;,. However, from the analysis of
Blokhuis and Bedeaux (BB) [22] one can infer that there
may be a nontrivial limiting function for T—T,.. Based
on the Helfrich Hamiltonian and their microscopic ex-
pressions for oj3' and « (recall that the term ~K vanishes
in our case) their result can be cast into the form [note
the qualitatively different ¢ dependence compared with
Fig. 3(b)]

4 2
opp(q >0, T—T,) /o' =1+ (%+2 (gépp)*+ -+,

(4.14)

which must be compared with F(q,7T) and F,(q)=1 (see
also Fig. 2). (The definition of the correlation length by
Blokhuis and Bedeaux differs from ours; however, close
to T, this difference amounts only to a different prefactor
of the power law &T—T,)=& ((T.—T)/T,17%.)
Thus at least for the function &(q) one obtains a “univer-
sal” nontrivial form for T—T,.. The question whether
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this is also true for the experimentally relevant function
o(q) [#&(q), see Egs. (4.7) and (4.8)], in particular in the
presence of long-range forces [see Eq. (4.6)], must be ad-
dressed by an improved analysis which goes beyond our
present sharp-kink approximation [Eq. (3.1)]. Finally it is
also instructive to display the function
E(q,T)=F(q,T)go)* as function of ¢q. (In the bilinear
approximation one has Ey;(q,T)=(q0 )?a(g)/0(0) [see
Eq. (4.1)].) According to Eq. (4.12) E(q,T) gives, up to
constant factors, the cost in free energy in units of the in-
trinsic surface tension for maintaining a capillary wave
with a given wavelength A=27%/q. Figure 4 shows that
this free energy vanishes for long wavelengths propor-
tional to g? as predicted by the standard capillary wave
model. However, we find it interesting that our micro-
scopic approach predicts that this free energy reaches a
maximum at g, ~3/¢ and approaches a finite value for
large g. For high temperatures the position of this max-
imum shifts to smaller values of g. Although this struc-
ture of E(q,T) occurs at the edge of the applicability of
the effective interface model [A,~(27w/3)o] and al-
though our temperature analysis is limited to low temper-
atures Fig. 4 leads us to speculate whether within a
refined theory the position g.(7T) may serve as a natural
wave-vector cutoff ¢,, which is then no longer imposed
externally by the somehow arbitrary requirement
9,,£=2m but follows from the effective interface Hamil-
tonian itself. If it was true this would solve a longstand-
ing discussion in the literature.

At this stage it is worthwhile to make contact between
our results and the phenomenological approach by
Meunier [50]. In particular we are interested in compar-
ing both the structure of the g-dependent surface tension
and the cutoff dependence of the experimentally accessi-

qo

FIG. 4. E(q,T)=(q0)*F(q,T) with F(q, T) taken from Fig. 3
represents the cost in free energy in units of the intrinsic surface
tension for maintaining a capillary wave with a given wave-
length 27 /q [Eq. (4.12)]; o denotes one of the Lennard-Jones in-
teraction parameters. E(g,T) reaches a maximum (denoted by
full circles) at g.(T) which shifts to lower values for higher tem-
peratures. For small g, E(q,T) vanishes ~g? whereas it ap-
proaches a finite value at large g (see the inset). In the bilinear
approximation, which is not used here, E(q,7) would be
given by the wave-vector-dependent surface tension:
Ey(q, T)=(qa )20'((], T)/O'l/gl
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ble moments F? [see Eq. (4.9)]. Meunier’s approach is
based on a mode-coupling theory applied to the local
Hamiltonian

FH{fP=1to, [ dx [ dy[(VfP—LVf)*].

F retains the first two terms of the expansion of
[14+(Vf)?]"/2—1. One should note that % violates the
positivity requirement and favors configurations with
large spatial variations. Equation (4.13) leads to [50]
S=1and Z};(¢—0)=(3kyz T /8m)q?/of* which is pos-
itive [as is the case for &(q) in Eq. (4.8)].

Meunier’s line of argument is to extrapolate the small ¢
behavior of Z(q) to large g so that ¢23(g— o )~g* Ac-
cording to Egs. (4.9) and (4.11) this assumption leads to a
decay of the integrand for the moments F? [see Eq.
(4.9)]~q9 %", Thus for d =3 and i <1 the moments F}?
would remain finite even if the momentum cutoff q,, is
shifted to infinity. This reasoning would therefore lead to
the conclusion that for the experimentally observable
quantities F7 the momentum cutoff is irrelevant.

However, our results show that g2>="(g — o )=const
and therefore the integrand of the moments F} varies as
g% %*! for large g [see Eq. (4.9)]. Thus we conclude that
the moments F? are strongly cutoff dependent. Figure 2
and its inset demonstrate the qualitative difference be-
tween Meunier’s result =(g) and our estimate 2(g). Even
if our saddle-point-like approximation for the non-
Gaussian contribution to 2 would turn out to need im-
provements, we expect in any case that the leading term
of =,5(g—0) is analytic in g2. This means that in the
limit of small ¢ the logarithmic singularity in 2;(q),
which we have determined exactly, will dominate the
non-Gaussian contribution [see Eq. (4.6)]. Therefore the
nonlocal character of the Hamiltonian should always lead
to a decreasing function 2(q), at least for small q.

We conclude that the current interpretation of
reflectivity and ellipsometry data for fluid interfaces re-
quires reconsiderations due to the importance of the
long-range van der Waals forces, which lead to an in-
herent nonlocal description of the fluctuations. This
analysis should be accompanied by an improved estimate
of the non-Gaussian contributions which goes beyond our
saddle-point-like approximation as well as by a descrip-
tion of the intrinsic interface profile which goes beyond
the sharp-kink approximation.

(4.15)

V. SUMMARY

Starting from the microscopic density-functional
theory for an inhomogeneous simple fluid [Egs. (2.2) and
(2.3)], which consists of the coexisting liquid and vapor
phases far from the critical point, and by systematically
separating bulk, surface, line, and point contributions to
this density functional we derive the expression for the
effective interface Hamiltonian [Eq. (3.22)]. It is a nonlo-
cal and a nonbilinear functional of the interface
configuration and thus differs from all effective interface
Hamiltonians used so far in the literature which have al-
ways been local functionals of the interface configuration.
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We have shown that this effective interface Hamiltonian
is positive definite for arbitrary interface configuration
(Appendix C). In the limit of slowly varying interfaces it
reduces to the standard effective interface Hamiltonian
which, except for the cost in free energy due to the in-
crease of the interface area caused by capillary waves,
contains also terms proportional to the mean curvature
squared and to the Gaussian curvature [Eq. (3.27)]. We
have derived microscopic expressions for the coefficients
multiplying these terms [Egs. (3.28) and (3.29)]. They are
proportional to the moments of the interparticle potential
or of the two-particle distribution function [Eq. (2.4)].
Thus, e.g., for van der Waals interaction potentials de-
caying at large distances like r % the intrinsic surface
tension is finite but the coefficient in front of the curva-
ture terms is infinite. This divergence of the curvature
coefficient reflects the breakdown of the gradient expan-
sion for any interaction potential which decays like a
power law. This aspect becomes more transparent by
transforming the capillary wave Hamiltonian into
Fourier space and by keeping only terms quadratic in the
interface configurations [Eq. (4.1)]. This allows one to re-
tain nonlocality within the Gaussian approximation. The
nonlocality is reflected by the wave-vector dependence of
the surface tension which is proportional to an appropri-
ate Fourier transform of the interparticle potential [Eq.
(4.2)]. For long-range forces, the wave-vector-dependent
surface tension turns out to be a nonanalytic function for
small wave vectors [Egs. (4.5) and (4.6)]. This nonanalyti-
city reflects the divergence of the coefficients in the gra-
dient expansion in real space. Furthermore we find that
the gradient expansion fails even for exponentially decay-
ing interaction potentials. It is only valid if these poten-
tials have a strictly finite support (Appendix D). For a
certain model potential we compare our nonlocal and
nonbilinear effective interface Hamiltonian quantitatively
with various approximations thereof, in particular with
those used in the literature so far (Fig. 2). We find quali-
tative differences. In particular, the interpretation of
scattering data from fluid interfaces in terms of the capil-
lary wave picture is cutoff dependent, contrary to previ-
ous claims in the literature [Eq. (4.9)]. It turns out that
the Helfrich Hamiltonian [Eq. (3.27)] leads to a qualita-
tively wrong wave-vector dependence of the surface ten-
sion [Egs. (4.7) and (4.8)] even in that case in which the
gradient expansion exists. The difference between the
predictions of the standard capillary wave theory [Eq.
(3.23)] and of the nonlocal and nonbilinear effective inter-
face Hamiltonian [Eq. (3.22)] become smaller for high
temperatures but persist to be significant (Fig. 3). There
are indications that the nonlocal effective interface Ham-
iltonian suggests a natural intrinsic wave-vector cutoff
which is not imposed externally (Fig. 4).
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APPENDIX A: DERIVATION
OF THE STANDARD
EFFECTIVE INTERFACE HAMILTONIAN

In order to derive the standard effective interface Hamiltonian %#'*({f}) [see Eq. (3.23)] from the nonlocal expression

F({f}) [see Eq. (3.22b)] we replace the

upper

limit of the 2z’ integration by f, (x,p)(x'—x)

+f,(x,y)(y’—y) and change the integration variables from (x,y,z,x’,y",z") to (x,y,z,x"~x,y'—y,z’):

ho(R, (fD=—4pi=p,? [ ,d’R" [ " dz [

0

x'foty'f
ydz’w(x’,y’,z’—z) . (A1)

The integrand @w(x,y,z) in Eq. (A1) is a spherically symmetric function. Therefore it has the form

W(x,p,z)=p(x2+y2+z?),

(A2)

where p(u) is a smooth function which vanishes for # — . The integration over the variables R'=(x’,y’) in Eq. (A1)
is performed in polar coordinates [p=(x'2+y'?)!/2, p=arctan(y'/x")] so that

ho(R, (FD=—4p1=py? ["de [ “dpp [ dz [I" d'p(p?+(' =21,

where the function
ale)=fcosp+ f,sing (A4)

depends parametrically (via f, and f,) on R=(x,y).
After integrations by parts and changes of variables one
obtains the following expression:

ho(R,f)=—1p,—p, ) f:”d(pa((p)arctan[a((p)]
@ 3 2
x [ “dR R’p(R?). (A5

From Eqgs. (3.13) and (A3) a straightforward calculation
leads to

(A3)

[
On the other hand, one has

f02"d¢a(¢)arctan[a(<p)]
=271+ f2+fDHV*=1]. (AT
After combining Egs. (A5)-(A7) one obtains the standard
expression for the effective interface Hamiltonian given in
Eq. (3.23) with 7, =o' [see Eq. (3.12)].
APPENDIX B: CURVATURE TERMS

After inserting the expansion in Eq. (3.24) into Eq.

o 3 D (3.212b) onle obtains with §f(x",y',x,y)=x"f,
fo dR R%p(R)=— [ “dz1(2) . (A6) Sy’ f, 4 1(x' frn +2xp" foy +3 2 f 0 )
J
h = 1 A 2 +°°d ' + o ' ®© 8f(x"y"x,p) ? = I’ o .
ol{f P L(Ap) f_w X f_w dy fo dz fo dz'w(x',y',z' —z) (B1)

In the next step the right-hand side of Eq. (B1) is expanded in powers of the second-order derivatives f,,, f,, and f),
and only terms up to second order in these derivatives are kept. The coefficients in front of these terms depend also
parametrically on the first-order derivatives f, and f,; as far as this dependence is concerned no further expansion is
made. For a spherically symmetric potential #(x,y,z) it is convenient to perform the integrations over x’ and y’ in Eq.
(B1) by using polar coordinates. The prefactors of the terms linear in f,, f,,, and f,, vanish due to this spherical sym-
metry. After a tedious calculation—which includes no further approximations—the dependence of the prefactors of
the terms quadratic in f,, f,,, and f,, with respect to the interparticle potential can be cast into a simple integral form
while their dependence on f, and f, is summed up leading to the following final form:

contributions to hy(f) bilinear in f,, , f,, , and f),
= —i—Z(Ap)Z [ drretn |0+ £24 - 1K) . (B
The mean (H) and the Gaussian (K) curvature are given by Eqgs. (3.25) and (3.26).

APPENDIX C: NON-NEGATIVITY OF THE EFFECTIVE INTERFACE HAMILTONIAN

In order to prove the non-negativity of the nonlocal capillary wave Hamiltonian given in Eq. (3.22) we rewrite it in
the following way after integrating by parts:
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H({f})=—LAp)? f::dx f_+:dx'f_+:dy f_+:dy'fowdz fOAfdz’fI)(x’—x,y'—y,z'-—z)

=—1(Ap)? f_*':dx f_+:dx'f_+:dy fj:dy’lAf f_wAfdzw(x’—x,y’—y,z)

+ fomdz fOAfdz'z’:j;z‘f)(x’—x,y’—y,z'—z)’ , (C1)

where we have used the abbreviation Af = f(x’,y’)— f(x,y). Using the spherical symmetry of the potential & (x,y,z)
the above expression can be written as

HUSD==38pP [Tdx [T ax [T ay fj:dy'[fOAfdz(Af—z)w(x’—x,y’—y,z) (o)

Since the potential @ is negative (recall the difference between w and @ [see Eq. (2.2)]) it is easy to see that independent
of the sign of Af the integrand in Eq. (C2) is non-positive which proves the non-negativity of the effective interface
Hamiltonian.

APPENDIX D: CONVERGENCE OF THE GRADIENT EXPANSION

In order to analyze the convergence of the gradient expansion of the effective interface Hamiltonian [Eq. (3.22)] for
simplicity we consider the case that the interfacial profile f(R) is translationally invariant in the y direction and thus
depends only on the variable x: f(R)=1(x). In this case the analog of Eq. (3.22) has the form

Ho ()= [~ dx Rolx,{9}), (D1)
where

Bo(x, {¢})=—1(Ap)? f_ww dx'fow dz fowx’)_'bmdz’L/D(x’—-x,z’—z) (D2)
and

D(x,2)= [* dyw(x,p2) . (D3)

After performing the gradient expansion along the lines described in Sec. III for a spherically symmetric interaction po-
tential 0 (x,z),

D(x,z2)=p(x%*+22), (D4)

and by analyzing exclusively those terms which contain only the second derivative of ¥, i.e., ¥''(x), one obtains as the re-
sult of tedious algebra the following series in powers of ¢''(x):

ho(x, ($))=—1(Ap)? ‘—‘3% f_+: dx’ fo‘” dz D(x',z)x"

+ 3 (o [ L g0 (D5)
n=2 : T

where @, (x',0)=(d*/dz*)(x',z)|,—,. By using the properties

D2k +1)(x,0)=0,

| X (D6)
z’iJ(Zk,(x,O)=L2kk—!)' d(()icz)kﬁ(XZ) ,
and after integrating by parts Eq. (D5) can be cast into the following form:
Rolx, ($))=—L(Ap)? [3”2(—") ST ax [T dz e, 2x?
= e P+ 1 1 e
+3 (-0 | 2k i J, x| (D7)




1848 M. NAPIORKOWSKI AND S. DIETRICH 47

with the function ¢(x) defined in Eq. (3.13) [see also Eq.
(3.12)]. For interaction potentials decaying ~r'*™ the
coefficients f8°dx x2kt(x) of the terms (¢'')** are infinite
for k 2 (7—1)/2. Thus we conclude that the gradient ex-
pansion fails for any power-law interaction. In order to
test for short-range forces the absolute convergence cri-
terion for the series in Eq. (D7), which in the present case
takes the form

* dx x*t(x) !

[¢¥"(x)]?< lim ‘ 0

k—oo ’ fwdxx2k+2t(x)l ’ (D8)
0
we employ the following simple model potential:
t(x)=Be **. (D9)

It is straightforward to check that in this case the condi-
tion in Eq. (D8) reduces to

2
[¢"(x)]?< lim 2==0.

k— o 4k D10)

Since Eq. (D10) is violated for any nontrivial interface
configuration we conclude that the gradient expansion
breaks down even for exponentially decaying forces. It is
noteworthy that one obtzains similar results for the model
potential ¢(x)=B’'e”**", Finally for a model potential
t (x) which has a finite support,

to for0=x <o
t(x)=

0 elsewhere , (D11)
the criterion in Eq. (D8) reduces to
(ol <+ (D12)
o

Equation (D12) states that the gradient expansion is valid
for all configurations which vary on a length scale larger
than the range of the interaction potential. Therefore we
find that the gradient expansion is only valid for interac-
tion potentials between the fluid particles which have a
strictly finite support.
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